I’ve recently made a career change. Actually, I’m not even sure whether to call it that, or the next step of a natural, if meandering progression of a scientist not on the academic career path. Even though I see more and more articles and social media threads showcasing the career opportunities outside of academics and the need to emphasize those opportunities, it can still feel like a walk in the wilderness to someone with a non-medical, non-human, non-microbial genetics background. With genetics and genomics data gathering and analysis skills, it SEEMS like it would be easy to slide into a biomedical lab, either with the government, or private industry, though the job applications tend to require clinical lab experience as well as expertise with data and analyses on a scale much larger than what the typical ecological geneticist is used to. On my job seeking journey, I worried that I would have to give up “interesting” science in favor of drug testing and humanGWAS data analysis or continue to look for the unicorn research position whereI had job stability and could work on projects with a more conservation and ecological slant.
Luckily, I managed to land at Eagle Fish Genetics Lab (EFGL) in Eagle, Idaho where resources and funding are available to power large scale genetics projects that inform management decisions affecting endangered and threatened fish species along with the management of non-native and invasive species. There are several conservation genetics labs across the country that have created a similar niche where applied and pure research is being conducted (see Robin Waple’s illustrious career at NOAA’s Northwest Fisheries Science Center, for one example). The projects here at EFGL fall into three major categories: Genetic Stock Identification (GSI), Parentage Based Tagging (PBT), and Sex Marker Discovery. Every year, juvenile and adult steelhead and Chinook salmon return to the Lower Granite Dam on the Snake River. These fish are genotyped using a species-specific SNP panel consisting of several hundred markers. The genotypes are compared to baseline genetic data of known stocks in the region to ascertain the stock composition of the returning fish.
Continue reading